Potenciación del aprendizaje motor mediante el uso de dos protocolos diferentes de estimulación eléctrica transcraneal en adultos sanos
Palabras clave:
aprendizaje motor, estimulación eléctrica transcraneal, corriente directa, frecuencia de ruido aleatorioResumen
El uso de la estimulación eléctrica transcraneal (EET) para mejorar el aprendizaje motor es un tema de gran interés para la rehabilitación física y en el contexto del desempeño deportivo. El objetivo. Evaluar el efecto de la aplicación de dos protocolos diferentes de estimulación eléctrica transcraneal sobre el aprendizaje motor en adultos sanos. Material y Métodos. Se desarrollaron dos experimentos; el primero incluyó 15 sujetos controles aleatorizados y asignados a 3 grupos que recibieron de entrada diferentes intervenciones. El primer grupo inició con estimulación eléctrica transcraneal de corriente directa (EETCD), el segundo grupo inició con estimulación eléctrica transcraneal en frecuencia de ruido aleatorio (EETFRA), y el tercer grupo recibió estimulación placebo. Todos los sujetos fueron evaluados con un tablero de Lafayette, realizando las cuatro tareas estandarizadas por sus autores. Se analizó el número total de errores en cada tarea según la intervención experimental. En el segundo experimento se evaluó 11 sujetos, la influencia del momento (antes o durante la prueba) de la aplicación de la modalidad que resultó más efectiva en el experimento 1, con el uso del tablero de Minnesota. Resultados. En el experimento 1 los sujetos que recibieron la EETCD y la EETFRA mostraron mejor desempeño motor, con un menor número de errores cometidos con respecto al grupo placebo (ANOVA de medidas repetidas; (p=0.006); y un tamaño del efecto promedio grande para la EETFRA (g de Hedge: -0.8), y medio para la EETCD (g de Hedge= -0.6). La EETFRA resultó más efectiva cuando se aplicó durante la ejecución de la tarea motora (g de Hedge: -0.64 vs -0.33); pero ambas modalidades disminuyeron el tiempo de ejecución de manera significativa (ANOVA, p=0.0191). Conclusiones. La aplicación de EETCD y la EETFRA mejoraron el aprendizaje motor; en especial la aplicación de la EETFRA durante la ejecución del paradigma experimental.
Referencias
Desarkar P, Vicario CM, Soltanlou M. Non-invasive brain sti-mulation in research and therapy. Sci Rep. 2024; 14: p. 1-4.
Qi S, Yu J, Li L, Dong C, Ji Z, Cao L, et al. Advances in non-in-vasive brain stimulation: enhancing sports performance func-tion and insights into exercise science. Front. Hum. Neurosci. 2024 November 29; 18: p. 1-13.
Kesikburun S. Non-invasive brain stimulation in rehabilitation. Turk J Phys Med Rehab. 2022; 68(1): p. 1-8.
Hamano YH, Sugawara SK, Fukunaga M, Sadato N. The inte-grative role of the M1 in motor sequence learning. Neuroscien-ce Letters. 2021; 760: p. 1-9.
Byczynski G, Vanneste S. Modulating motor learning with bra-in stimulation: Stage-specific perspectives for transcranial and transcutaneous delivery. Progress in Neuropsychopharmacolo-gy & Biological Psychiatry. 2023 April; 125: p. 1-12.
Moret B, Donato R, Nucci M, Cona G, Campana G. Trans-cranial random noise stimulation (tRNS): a wide range of fre-quencies is needed for increasing cortical excitability. Sci Rep. 2019 October; 9(1): p. 1-8.
Haeckert J, Lasser C, Pross B, Hasan A, Strube W. Comparati-ve study of motor cortical excitability changes following anodal tDCS or high-frequency tRNS in relation to stimulation dura-tion. Physioligical Reports. 2020 Oct; 8(19): p. 1-14.
Azid MB, Mazalan NS, Kamaruzaman FM, Nazarudin MN. Intrinsic and Extrinsic Motivation in Sports. International Journal of Academic Research in Progressive Education and Development. 2023 September; 12(3): p. 270-275.
Schüler J, Wolff W, Duda Jl. Intrinsic Motivation in the Context of Sports. In J S. Sport and Exercise Psychology.; 2023. p. 171-192.
Karabanov AN, Tzvi-Minker E. Effects of Electrical Brain Sti-mulation on Motor Learning. In Handbooks O, editor. The Oxford Handbook of Transcranial Stimulation. Second Edi-tion ed.; 2021. p. 893–920.
Guimarães AN, Porto AB, Marcori AJ, Lage GM, Altimari LR, Alves Okazaki VH. Motor learning and tDCS: A syste-matic review on the dependency of the stimulation effect on motor task characteristics or tDCS assembly specifications. Neuropsychologia. 2023 January 28; 179: p. 108463.
Qi S, Liang Z, Wei Z, Liu Y, Wang X. Effects of transcranial direct current stimulation on motor skills learning in healthy adults throu-gh the activation of different brain regions: A systematic review. Frontiers in Human Neuroscience. 2022 October 06; 16: p. 1-11.
Holgado D, Sanabria D, Vadillo MA, Román Caballero R. Zapping the brain to enhance sport performance? An umbrella review of the effect of transcranial direct current stimulation on physical performance. Neuroscience and Biobehavioral Re-views. 2024; 164: p. 1-12.
Takeuchi N. Perspectives on Rehabilitation Using Non-invasi-ve Brain Stimulation Based on Second-Person Neuroscience of Teaching-Learning Interactions. Frontiers in Psychology. 2022 January; 12: p. 1-6.
Brancucci A, Rivolta D, Nitsche MA, Manippa V. The effects of transcranial random noise stimulation on motor function: A comprehensive review of the literature. Physiology & Behavior. 2023 March 15; 261: p. 114073.
Potok W, van der Groen O, Bächinger M, Edwards D, Wende-roth N. Transcranial Random Noise Stimulation Modulates Neural Processing of Sensory and Motor Circuits, from Po-tential Cellular Mechanisms to Behavior: A Scoping Review. eNeuro. 2022 February; 9(1): p. 1-13.
Rodriguez Huguet M, Ayala Martínez C, Vinolo Gil MJ, Góngora Rodríguez P, Martín Valero R, Góngora Rodríguez J. Transcranial direct current stimulation in physical therapy treatment for adults after stroke: A systematic review. Neuro-Rehabilitation. 2023 December; 54: p. 171-183.
Elyamany O, Leicht G, Herrmann CS, Mulert C. Transcranial alternating current stimulation (tACS): from basic mechanis-ms towards first applications in psychiatry. Eur Arch Psychia-try Clin Neurosci. 2021 Feb; 271(1): p. 135-156.
Hu K, Wan R, Liu Y, Niu M, Guo J, Guo F. Effects of trans-cranial alternating current stimulation on motor performance and motor learning for healthy individuals: A systematic review and meta-analysis. Front Physiol. 2022 Nov; 13: p. 1-12.
Lima de Albuquerque L, Fischer KM, Pauls AL, Pantovic M, Guadagnoli MA, Riley ZA, et al. An acute application of trans-cranial random noise stimulation does not enhance motor skill acquisition or retention in a golf putting task. Human Move-ment Science. 2019 August; 66: p. 241-248.
Kaminski E, Carius D, Knieke J, Mizuguchi N, Ragert P. Com-plex sequential learning is not facilitated by transcranial direct current stimulation over DLPFC or M1. Eur J Neurosci. 2024 April; 59(8): p. 2046-2058.
Metais A, Muller CO, Boublay N, Breuil C, Guillot A, Daligault S, et al. Anodal tDCS does not enhance the learning of the sequen-tial finger-tapping task by motor imagery practice in healthy older adults. Front Aging Neurosci. 2022 December 9; 14: p. 1060791.
Pozdniakov I, Vorobyova A, Galli G, Rossi S, Feurra M. Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Scientific Reports. 2021; 11(1): p. 1-10.
Ting Ouyang C. Temporal effects of tDCS on motor learning behavior. BIO Web of Conferences. 2023; 72: p. 1-6.
Lawson I. Purdue Pegboard Test. Occupational Medicine. 2019 July; 69(5): p. 376-377.
Phylactou P, Pham T, Narskhani N, Diya N, Seminowicz DA, Schabrun SM. Phosphene and Motor Transcranial Magnetic Stimulation Thresholds Are Correlated: A Meta-Analytic In-vestigation. bioRxiv. 2023 December; 12: p. 1-33.
Yamada S, Enatsu R, Ishikawa S, Kimura Y, Komatsu K, Chaki T, et al. Transcranial electrical stimulation technique for induc-tion of unilateral motor evoked potentials. Clinical Neurophy-siology. 2023 June; 150: p. 194-196.
Ryan JL, Eng E, Fehlings DL, Wright FV, Levac DE, Beal DS. Motor Evoked Potential Amplitude in Motor Behavior-based Transcranial Direct Current Stimulation Studies: A Systema-tic Review. Journal of Motor Behavior. 2023; 55(3): p. 313–329.
Ovacik U, Tarakci E, Gungor F, Menengic KN, Leblebici G, Acar ZO, et al. The minnesota manual dexterity test as a bimanual per-formance measure in people with multiple sclerosis. Multiple Scle-rosis and Related Disorders. 2022 August; 64: p. 2211-0348.
Meek AM, Greenwell D, Poston B, Riley ZA. Anodal tDCS accelerates on-line learning of dart throwing. Neurosci Lett. 2021 November; 746: p. 136211.
Neri F, Della Toffola J, Scoccia A, Giannotta A, Rossi S, San-tarnecchi E. Enhancing virtual reality game performance with tRNS: EEG modifications and accelerated learning. Brain Sti-mulation. 2025; 18(1): p. 466-467.
van der Groen O, Potok W, Wenderoth N, Edwards G, Mat-tingley JB, Edwards D. Using noise for the better: The effects of transcranial random noise stimulation on the brain and beha-vior. Neurosci Biobehav Rev. 2022; 138: p. 1-11.
Neri F, Della Toffola J, Scoccia A, Benelli A, Lomi F, Cinti A, et al. Neuromodulation via tRNS accelerates learning and enhan-ces in-game performance at a virtual-reality first person shooter game. Computers in Human Behavior. 2025 April; 165: p. 1-12.
Brown RE, Bligh TW, Garden JF. The Hebb Synapse Before Hebb: Theories of Synaptic Function in Learning and Me-mory Before Hebb (1949), With a Discussion of the Long-Lost Synaptic Theory of William McDougall. Front. Behav. Neu-rosci. 2021 October 21; 14: p. 1-22.
Haeckert J, Lasser C, Pross B, Hasan A, Strube W. Comparati-ve study of motor cortical excitability changes following anodal tDCS or high-frequency tRNS in relation to stimulation dura-tion. Physiol Rep. 2020 October; 8(19): p. 1-14. x
Descargas
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
